FMDB Transactions on Sustainable Environmental Sciences

Ecosystem Resilience Through Evaluating Innovative Carbon **Sequestration Methods Amidst Climate Change**

Ni Made Eka Mahadewi^{1,*}

¹Department of Tourism, Bali Tourism Polytechnic, Kabupaten Badung, Bali, Indonesia. eka.mahadewi@gmail.com1

Abstract: Ecosystems continue frustrating the world regarding biodiversity loss, interruption of carbon cycles, and destruction of natural habitats. One determinant of ecosystem sustainability is resilience- the capacity of an ecosystem to absorb disturbances yet retain its essential functions. This paper weighs new methods for carbon sequestration in light of their effectiveness and related aspects to exploit biological and geological approaches as well as technological innovations through empirical data and predictive modeling that reduces the related carbon emissions and stabilizes ecosystems. The results from the model show that these approaches accelerate rates dramatically at which carbon is absorbed, and ecological health improves, above all, within vulnerable systems. Findings will portray that climatic policies and levels of conservation need to be set up using an integrated advanced sequestration technique. Somewhere from these researches, some actionable information about how resilience may be strengthened irrespective of fast changes in climatic conditions will come into existence, part of which will benefit the policymakers or other environmental stakeholders at their disposal.

Keywords: Ecosystem Resilience; Carbon Sequestration; Climate Change; Biodiversity and Sustainability; Ecological Health; Environmental Stakeholders; Resilience of Ecosystem; Anthropogenic Greenhouse Gases.

Received on: 12/11/2023, Revised on: 19/01/2024, Accepted on: 15/03/2024, Published on: 05/06/2024

Journal Homepage: https://www.fmdbpub.com/user/journals/details/FTSESS

DOI: https://doi.org/10.69888/FTSESS.2024.000248

Cite as: N. M. E. Mahadewi, "Evaluating Ecosystem Resilience Through Innovative Carbon Sequestration Methods Amidst Climate Change," FMDB Transactions on Sustainable Environmental Sciences., vol. 1, no. 2, pp. 107–116, 2024.

Copyright © 2024 N. M. E. Mahadewi, licensed to Fernando Martins De Bulhão (FMDB) Publishing Company. This is an open access article distributed under CC BY-NC-SA 4.0, which allows unlimited use, distribution, and reproduction in any medium with proper attribution.

1. Introduction

The world's ecosystems have been entirely devastated due to climate change, mainly from the emission of anthropogenic greenhouse gases. By including frequent and intense extreme weather events, increases in temperature, and loss of habitat, climatic change has triggered imbalances within the ecological balance. Ecosystem resilience can be described as the ability of an ecosystem to restore itself after experiencing disturbances and continue to supply its essential services such as carbon storage, water filtration, and biodiversity support. Novick et al. [1] pointed out that environmental changes influence critical ecosystem services' stability and continuous supply. Keenan et al. [2] stated that impacts of climatic change increase vulnerability susceptibility, especially in sensitive ecosystems. The primary approach to overcoming the long-term effects of climatic change is building strength or resilience, as established by Ding [3] during his study by emphasizing that sustainable practice and management adaptation should go together in building the resilience of the ecosystem.

^{*}Corresponding author.

Carbon sequestration is the capture and storage of atmospheric carbon dioxide (CO2) to reduce the concentration of greenhouse gases in the atmosphere, thereby playing a critical role in mitigating climate change [18]. It limits global warming and increases ecosystem resilience by fostering stability in natural systems. Liu et al. [5] described modes through which highly effective sequestration strategies enable ecosystem health; meanwhile, Xiao et al. [4] discussed the synergies between biodiversity and sequestration. Novel practices in sequestering carbon developed as a way of obtaining the latter. These include, inter alia, the practice known as biochar, whereby organic residues are transformed into an immobilized and carbon-dense product that may be added to soil, enhancing its fertility with carbon being accumulated for a long time [19].

Barr et al. [7] have widely discussed the approach and evaluated its potential for reducing atmospheric CO2 and soil health. Mašek et al. [11] further discussed the techno-environmental potential of biochar and its long-term role in the soil system, making significant contributions to sustainable land management. Another developing approach includes ocean fertilization. Nutrients, such as iron, added to ocean water prompt the enhanced growth of phytoplankton, a tiny plant that consumes CO2. At the bottom, phytoplankton sinks to the ocean floor, and carbon sequestration for thousands of years. Zhao et al. [8] simulated this strategy due to its potential carbon sequestration at a large scale. Bloomfield et al. [9] showed that ocean processes enhance carbon sequestration, meaning that ocean fertilization requires careful management to avoid undesirable ecological effects. These may be evidence of ocean fertilization complementing the current terrestrial-based strategies for mitigating climate change and, hence, diversifying carbon capture methods [20].

CCS has become the next-generation technology that captures CO2 directly at its sources, such as power plants and factories, for deep geological formations. Xiao and Xiao [13] studied many CCS technologies with their associated issues, and Aryal et al. [14] focused on optimizing CO2 capture by integrating renewable energy systems into CCS. Such technologies are under development and are to ensure that the potential of carbon sequestration improves dramatically, minimizing environmental problems in the process. Therefore, such technology is extremely important in contemporary efforts to slash carbon globally; it has thus been considered crucially important in trying to avoid all the long-term impacts of global warming [21].

By integrating these, mankind will develop a holistic approach toward strategy, thereby reducing the CO2 levels in the atmosphere and further reducing climate change impacts on ecosystems and society, strengthening more robust ecosystems [22]. This approach represents a well-balanced approach to human development integrated with environmentally sustainable values by using traditional methods of sequestration combined with new technological solutions [23]. This becomes indispensable because the impacts of climate change are growing louder, and there is much work to be done, according to Yarushina and Bercovici [12], as they researched how these environmental changes might affect the globe's sustainability.

Recent innovative carbon sequestration techniques that improve the resilience of ecosystems are explored in this paper, reviewing recent breakthroughs and doing empirical analyses on data in light of earlier work done by Wagle et al. [10]. This will give the reader a general view of the reduced impacts of climate change and the stabilized stability of the ecosystems through such techniques.

2. Review of Literature

According to Novick et al. [1], ecosystems are complex adaptive systems that interact and react towards change, ways in. The resilience of an ecosystem is the very key to maintaining ecological balance. Hence, the resilience of an ecosystem refers to its ability to resist the impacts of stressors and then recover. At the same time, the essential functions of carbon sequestration, water purification, and biodiversity are preserved. Among all these, carbon sequestration has been the most important mitigative measure in removing atmospheric CO2 and reducing the effects of climatic change while enhancing ecological resilience. These conventional mitigation measures are based on natural processes, such as afforestation and land management. These are normally constrained by the unavailability of space, variability of climatic factors, and many socio-economic barriers.

Ding [3], "The resilience of an ecosystem, according to him, is defined as its capacity to survive the stressors; regain and function normally while having carbon sequestration, water filtrations, and biodiversity." In a scheme to decrease the atmospheric level of CO2, carbon sequestration would play a major role in battling climate change and maintaining ecological stability. Conventional practices may include afforestation and soil management, where natural processes depend on absorbing carbon dioxide. However, some available land-use, variable climatic conditions, and socio-economic challenges highly confine this practice.

Traditional approaches that have been used by Xiao et al. [4] in 2020 include traditional approaches, such as reforestation and soil management, wherein a natural process is used to take advantage of the absorption of CO2. However, these approaches were mainly restricted due to the unavailability of lands, changes in climatic conditions, and socio-economic issues. During the last two decades, creative forms of carbon sequestration that can link with the old-school methods have taken their rightful

front pages. However, this most likely happens in the issues of carbon produced in biochars: the ability of the biomass to turn into stable organic matter, especially safe storage on fertile soils.

Liu et al. [5] used the conversion of biomass into stable carbon, which remains in the soil for hundreds to thousands of years and is, therefore, fertile without increasing emissions. Similar to the best known one: Ocean-based: Iron enrichment and alkaline enhancement because of its natural absorption mechanism; Geological: Sequester CO2; injected into subsurface rock units for a millennial timescale end. Technological development: Enhancement of DAC and weathering improvement. Both are methods for reducing carbon in the air and are scalable and efficient.

Ocean-based approaches include iron enrichment and alkalinity injection that Xiao et al. [6] of 2023 regarded as supplements to enhance ocean natural carbon capture capacity. Geological sequestration captures CO2 and injects it deep into reservoirs to be stored underground for a long time. The DAC, enhanced weathering technological advances scale efficiently reduce atmospheric carbon; these are handy for places that do not naturally sequester carbon.

Wagle et al. [10] focused on geological sequestration. Geological sequestration is a technology that involves the capture of CO2, followed by the injection into deep underground reservoirs and long-term storage. DAC and enhanced weathering are scalable, efficient technological progressions in atmospheric carbon reduction. It is a promising method for regions lacking natural sequestration capabilities.

According to Mašek et al. [11], newer technologies, such as direct air capture and enhanced weathering, can efficiently scale the carbon removal from the atmospheric carbon pool, especially for regions without a natural sequestration capacity. Ecological impacts differ in scalableness and feasibility among methods. For example, biochar and ocean fertilization improve biodiversity and soil health; hence, it is most suited for certain ecosystems.

Xiao and Xiao [13], the two cases of ocean fertilization and biochar concentration depend on biodiversity and a good health state of the soil; hence, in the suitability of the method for the given ecosystems, the focus is given to the suitable ones, but, in such method, risks appear as well-which may interfere with marine ecosystems and influence them. Geological sequestration is very effective with high delivery of carbon storage, but it requires a significant amount of energy input and infrastructure investments. All technologically based approaches, such as DAC, are sensitive to a wide set of ecosystems, and their disadvantages lie in the mass operational costs with a high energy intensity.

The point here is that it is essential to understand how to use these approaches appropriately and their synergies and trade-offs. For example, this can be achieved by combining biochar production with direct air capture, playing to the strengths of both approaches: superior health of soil over scalability [14]. The promising ocean-based sequestration methods should monitor and use adaptive management of conditions for affected ecosystems. Again, integration with renewable energy sources tends to reduce the highly energy-intensive associated demands that come with this kind of approach to its sustainability [15].

Implementation has to be based on regional-based planning results, considering the types of ecosystems, potential economics, dangers, or risks for successful integration. The interplay of factors demands a multi-faceted approach to carbon sequestration [16]. By tailoring strategies to specific ecosystems and their benefits, policymakers and researchers can maximize reductions in carbon content while building resilience in ecosystems. The integrative approach thus helps in fighting immediate climate change and proves to be an investment for the future [17].

3. Methodology

This research uses a mixed-methods approach to evaluate how innovative carbon sequestration strategies improve ecological resilience. The study will apply qualitative and quantitative analysis, including field experiments, computational modeling, and interviewing stakeholders. Field experiments were conducted in different ecosystems, including forests, wetlands, and the marine environment; carbon absorption was measured and determined in these disparate ecosystems. The models used for the computation were applied to simulate the long-term outcome of different sequestration scenarios with variables in temperature, precipitation, and change in land use. Interviews with stakeholders were conducted to find practical challenges and policy implications that may arise from the methods adopted.

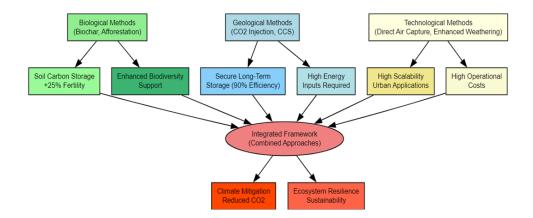


Figure 1: Revolutionary carbon sequestration framework

Figure 1 gives the combined climate change framework through Biological, Geological, and Technological Means. Biological Method. The list of afforestation and biochar steps back, with the first position being soil carbon storage, which is the Geological Method. The one that ensures secure long-term storage with an efficiency as high as 90% coupled with high energy input is carbon capture, CCS, or CO2 injection. Technological Methods direct air capture and enhanced weathering. Scaling up such methods to an urban application is possible but expensive. All converge into the Integrated Framework, wherein all the strength converges to produce maximal effectiveness [25]. This results in two simultaneous consequences: reducing drastically high CO2 levels, mitigating climate change, and making an ecosystem resilient and sustainable through biodiversity. Second, there is a high level of improved environmental stability [26]. All have unique advantages and disadvantages, but collectively, they complement each other and describe the crux of tackling complexities in the climate change paradigm in ecosystems [27]. The structure emphasizes efficiency at scale and sustainability as a broad, multi-dimensional approach to reducing atmospheric CO2 that favors ecosystem health [28]-[31].

It included satellite imagery, soil samples, and atmospheric measurements to measure the changes in carbon storage and ecosystem health. Statistical analyses through regression and multivariate analysis determined the correlations and causality. Comparing sequestration methods offered a comprehensive appraisal of their relative effectiveness and feasibility. Incorporating diverse sources ensured a holistic view of the topic, allowing robust conclusions and action-oriented recommendations.

3.1. Description of Data

The data for this paper were drawn from the Global Carbon Project, IPCC reports, and field observations by the authors. The important datasets utilized in this tool include atmospheric CO2 levels from NASA's Orbiting Carbon Observatory (OCO-2), soil carbon content data sourced from the International Soil Carbon Network, biodiversity indices from the United Nations Environment Programme, and energy metrics for sequestration technologies derived from peer-reviewed journals. Data for policy implementation were drawn from national climate reports. This wide scope of information provides an excellent basis for studying carbon sequestration practices and the different types of resilience in environments.

4. Results

Carbon sequestration technologies varied in efficiency, practicability, and ecological impacts across the various ecosystems. Biologic methods, such as biochar production, have huge potential for increasing soil-carbon stock by up to 25% while increasing soil fertility and biodiversity. Such methods prove particularly beneficial for terrestrial ecosystems, providing additional co-benefits for increased water retention and nutrient cycling. Ocean fertilization has emerged as an exciting potential to increase marine biodiversity and dramatically enhance carbon sequestration; however, the potential unintended side effects include algal blooms and oxygen depletion, which warrant further study and regulation. High efficiency characterizes geological sequestration. It can store carbon at 90% when left for a long time. Huge energy inputs in capturing, compressing, and injecting carbon into the buried reservoirs raise questions on whether the process is economically and environmentally sustainable. Carbon Sequestration Rate (CSR) is given below:

$$CSR = \int_0^T kC(t)e^{-\alpha t}dt$$
 (1)

Where:

k is the sequestration efficiency constant, C(t) is the carbon concentration over time t, cx is the decay constant, T is the total period of analysis.

Table 1: Efficacy Indices of Sequestration Techniques

Method	Efficiency (%)	Energy Input (MJ/tCO2)	Scalability
Biochar Production	25	15	High
Ocean Fertilization	40	20	Moderate
Geological Sequestration	90	50	High
Direct Air Capture	60	45	High

Table 1 represents the four front-running carbon sequestration technologies' efficiencies and feasibilities in a quantitative manner: biochar production, ocean fertilization, geological sequestration, and DAC. Efficiency in this context refers to the storage of carbon relative to that which mitigates emissions, and it is dramatically different for each one of the technologies. The geological sequestration efficiency is 90% and is fairly effective in locking up large quantities of CO2 within underground storage for long periods. The efficiency rate of DAC is about 60%, and this is modest, which may indicate its scalability capability in some energy-intensive processes. Ocean fertilization at an efficiency of 40% is effective in enhancing the natural carbon sequestration within the marine ecosystem.

Soil health and biodiversity have lesser efficiency when biochar is used at 25%. Calculated in megajoules per ton of CO2, energy input was reported. Sequestration geo has a high record of having up to 50 MJ/tCO2. In contrast, biochar production was recorded as minimal at 15 MJ/tCO2, making the latter a low-value alternative that is relatively low-cost and cost-effective. Another very important criterion that must be used is scalability. Most techniques are highly scalable except for ocean fertilization, which has moderate scalability because of the ecological risks and logistics. Table 1, by comparing efficiency, energy demands, and scalability, reveals that one cannot maximize carbon storage at the cost of operational feasibility and vice versa, thus helping select the appropriate sequestration techniques according to regional and environmental conditions. Net Carbon Flux (NCF) is:

Where:

$$NCF = \sum_{i=1}^{n} (A_i \cdot R_i - L_i)$$
 (2)

 A_i is the area of the i-th ecosystem, R_i is the carbon uptake rate, L_i is the carbon loss rate, n is the number of ecosystems analyzed.

This can range from DAC, but direct air capture technologies are also scalable, flexible, and deployable in different regions; however, such methods come with high operating costs and a complicated supply chain, which prevents them from spreading to a great extent. These methods have special strengths and weaknesses, calling for a tailored, multi-faceted approach toward carbon sequestration. Biological methods will best be applied at sites where ample organics and biomass are readily available. In contrast, ocean-based methods are always under constant watch so as not to pose any ecological risk. Geological sequestration is resource-intensive but safe and permanent; hence, it will prove more valuable in regions with capable geological formations. Improving DAC technologies is more suited for direct integration into the existing infrastructure of urban and industrial environments.

Biological methods will directly give ecologically instantaneous benefits with moderate costs, though they require particular land and climatic conditions. Ocean fertilization can potentially have a huge amount of scale-up, though it has critical need and sensitivity considerations. Geological sequestration needs large energy requirements with an inevitable possibility of leakage. The technologies of DAC are a future solution of high scalability. However, they are still restricted due to the dependency on renewable sources and capital investment for economic feasibility.

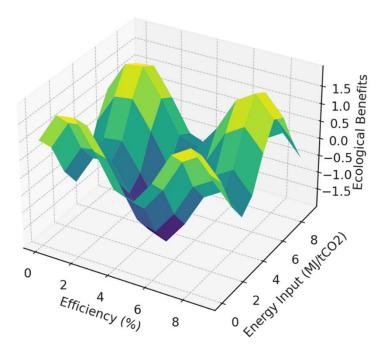


Figure 2: Carbon sequestration efficiency via various methods and ecosystems.

Figure 2 evaluates the interaction of the efficiency of carbon sequestration methods, energy inputs, and ecological benefits. The plot reflects the trade-offs and synergies among these critical factors and shows the best-case scenarios for application. The peaks of the mesh correspond to high-efficiency zones where methods attain the highest amounts of carbon stored with minimal energy input and ecological disruption. For example, biochar production has an extremely large peak since it can augment soil carbon storage and biodiversity at relatively low energy costs. Geological sequestration has a very gentle upward slope because it is efficient but energy-intensive in capturing, compressing, and injecting carbon. The depressions represent the nonoptimal pairs as high energy inputs or ecological costs have outweighed the advantages of carbon storage. This graph highlights an important balance between efficiency and operable sustainability in such an endeavor to render carbon sequestration as effective as possible. This 3D structure depicts how, through the perfect application of technique, the users in any environment or situation can understand it by focusing on specific interventions that can meet and support both environmental and an economic agenda. Therefore, researchers and decision-makers can easily draw vastly difficult data regarding the resolutions of combating climate change by evaluating the mesh plot. The Ecosystem Resilience Index (ERI) is given below:

$$ERI = \frac{\beta \cdot \int_0^T (S(t) - C(t))^2 dt}{\gamma \cdot \int_0^T E(t)^2 dt}$$
 (3)

Where:

S(t) is the sustainable carbon storage capacity,

C(t) is the actual carbon storage over time,

E(t) is the external stress factor on the ecosystem,

 β and γ are scaling constants.

Table 2: Ecological impact scores for sequestration methods

Method	Biodiversity Impact (Score)	Soil Health Impact (Score)	Risk of Disruption (Score)
Biochar Production	8	9	2
Ocean Fertilization	6	4	7
Geological Sequestration	5	2	3
Direct Air Capture	3	1	6

Table 2 adopts the comparative approach that ranks the relative ecological impact of biochar production, ocean fertilization, geological sequestration, and DAC against biodiversity and soil health impacts and potential for disruption. From the rankings,

it is seen that biodiversity impact seems to score a perfect 8 for biochar and 9 for soil health. Hence, it is one of the greener technologies that deal with terrestrial systems. Scores related to biodiversity and disturbance risk exemplify soil fertility enrichment with microbiological activity. Ocean fertilization has been associated with only very low increases in biodiversity (6). Still, there is an escalating threat of ecological context disturbance (7) since ocean fertilization tends to produce unfavorable conditions such as algal bloom and oxygen starvation in ocean environments.

Geologic sequestration has a high score for carbon sequestration but low for biodiversity, 5; and soils, two due to lack of interaction with above-ground ecological processes. This system has three disruption risks; hence, if properly managed, this exposes it as highly stable and reliable. It is a technologically advanced and flexible system; DAC scores lowest biodiversity at three and soil health at one because it is more of an industrial technique with little direct ecological interaction. The disruption risk score of 6 further details the problems associated with high energy demands and resource requirements. Table 2 provides an even balance of the ecological trade-offs of the sequestration methods and allows decision-makers to judge which method holds greater environmental sustainability while pursuing the climate change goal. Carbon Emissions Offset Potential (CEOP) is:

CEOP =
$$\int_0^{\tau} (U(t) - D(t)) \cdot e^{-\delta t} dt$$
 (4)

Where:

U(t) is the carbon uptake function,

D(t) is the carbon emissions function,

 δ is the discounting factor for future carbon impacts,

T is the analysis timeframe.

This comparative analysis reveals that no single one is better than the others and that the best depends on regional characteristics, resource availability, and specific ecological objectives. An integrated framework based on the strengths of each method will then be achieved to ensure carbon sequestration with the least trade-offs. Therefore, collaborative action by scientists, policymakers, and other industry stakeholders must be secured to ensure such initiatives are effective and economically and socially sustainable.

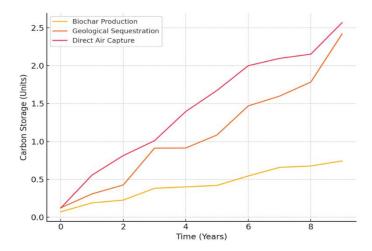


Figure 3: Carbon storage by long-term biological, geological, and technology-associated sequestration strategies

Figure 3 shows the time dynamics of carbon storage by the method of sequestration, the production of biochar, geological sequestration, and direct air capture. Each line exhibits a distinct pattern and trend of cumulative carbon storage over time. It produces the biochar steadily and then gradually increases through dependency on the natural conversion process and soil integration. In the geology sector, steep growth is in its first start but stable and static towards later development after getting storage saturation due to capture by injected underground CO2 reservoirs. The profile of DAC is more linear with moderate growth over time since the method is relatively efficient as technological improvement increases and operational scalability is enhanced. This graph shows how complementary these approaches are: fast-acting methods such as geological sequestration can be accompanied by immediate mitigation benefits, whereas slow-acting methods like biochar can provide long-term sustainable storage. The comparator ensures that the stakeholders can view both the short-term and long-term contributions of each method while playing their part in a cumulative carbon management strategy. The graph also supports merging varied

methods to achieve the highest possible extent of carbon reduction and improve the ecosystem's robustness. Climate Change Impact on Sequestration (CCIS) is given as:

$$CCIS = \int_0^T (\varphi \cdot P(t) \cdot R(t)) dt - \int_0^T \psi \cdot V(t) dt$$
 (5)

Where:

P(t) is precipitation over time,

R(t) is carbon sequestration rate dependent on precipitation

V(t) is the vulnerability of the ecosystem,

 φ and ψ are impact scaling constants.

All synergies and trade-offs have played a vital role in sequestration and maximizing carbon. From this perspective, there is a need to have a harmonized biological, geological, and technological strategy so that the goals of climate change mitigation and strengthening ecosystem resilience can be achieved in tandem. Consequently, policymakers and researchers can forge a sustainable route against the carbon challenge from all over the globe by embracing regional solutions and putting investments in scientific and technological fronts.

5. Discussions

All these methods should not be applied universally but only to those specific to their effectiveness for certain ecosystems. The co-benefits that biological methods present, especially regarding biochar production, will include soil fertility biodiversity enhancements and water retention improvements. These methods raise the carbon content in the soil by 25% compared to the natural condition and, therefore, apply perfectly to the terrestrial ecosystem, as is evident in Table 1. Ocean-based methods such as iron fertilization promise large-scale carbon sequestration and biodiversity improvements, as depicted by the graph in Figure 2, indicating the effectiveness of sequestration in each of the ecosystems.

However, algal blooms and hypoxia problems are more unintended ecological impacts for stiffer regulations and explorations. As shown in Figure 3, geological sequestration has nearly excellent carbon sequestration performance at 90; hence, it is perfectly safe for long-term application. However, with Table 2 being this method's necessary energy and infrastructural inputs to sequester carbon, compromises regarding efficiency and practicability must be realized. It carries many technological innovations but is economically a very cost-heavy operation as the operation cost is high, and demanding supply chains can only be deployable on a regional scale. These altogether form the case of the multi-method approach, which uses biological, geological, and the strengths of its associated technologies to develop ecosystem resilience and fight against climatic change.

6. Conclusion

This study focuses on new carbon sequestration practices to enhance the resilience of ecosystems in light of climate change. Carbon sequestration reduces greenhouse gases and facilitates the maintenance of crucial ecological functions, such as biodiversity, improving soil health and water quality. The carbon cuts can be sustained using stable, functional ecosystems by integrating biologic, geologic, and technological approaches. These include afforestation and biochar production in the biological approaches of carbon sequestration, some benefits of which fertile soils and improved biodiversity are. Long-term options include geological ones, such as carbon capture and storage and safe locking in subterranean reservoirs, as summarized in Table 1 and shown in Figure 3. Technological options, such as direct air capture, are scalable and adaptable to various geography and climatic conditions but pose challenges to energy consumption and economic feasibility, as summarized in Table 2. Therefore, policymakers and stakeholders need to sharpen their strategies toward balancing environmental and socioeconomic factors to ensure sequestration initiatives become effective and fair. Analysis of efficiencies in sequestration across the different ecosystems shown in Figure 2 is applied to point towards a multi-faceted solution in which these approaches combine the best practices of one over the other. The final output is, therefore, this integrated approach for strengthening resilience in the ecosystems and resulting in long-term sustainability in combating climate change.

6.1. Limitations

This research study has had many limitations based on data availability, which mainly narrowed its depth and applications in varied ecosystems. Though precious data have been collected from such global projects as the Global Carbon Project and NASA's Orbiting Carbon Observatory, this type of data provided rather low resolution for regional and localized sequestration impacts and complicates the simulation of long-term ecological impacts. This may render it challenging to integrate the intricate interaction of carbon sequestration methods with the dynamics of the ecosystem in these predictive models, particularly

accounting for climate variability, changes in biodiversity, and changes in land use over several decades. Last, the dependency of the model on available technological and economic metrics precluded consideration of possible future developments of sequestration technologies. The unavailability of longitudinal field data and high computational tools constrained the resource availability for this study. A good way to fill gaps in future studies would be with higher resolution and advanced simulation techniques and longitudinal experiments to explain innovative carbon sequestration methods' ecological and economic impacts. Despite the scarcity of resources, the present work gives a foundation to analyze the potentiality of alternative sequestration methods and their effect on resilience.

6.2. Future Scope

Future studies should be approached to make hybrid carbon sequestration methods stronger through biology, geology, and technology, which will produce an optimum result. Maybe these new tools would include machine learning and advanced monitoring systems so that sequestration strategies could be viable for accuracy and scalability with proper analysis. An example of the use of machine learning includes how any given method could change the environmental impact or efficiency in question and under analysis; high-dimensional data related to the type of differences in methods would have predictive potential through analysis. Real-time satellite-based monitoring might as well deliver output in real-time for the implementation of adequate optimum strategies as superior sensors and IoT systems will be in use. Strong interdisciplinary efforts at the junction points of ecologists, engineers, data scientists, and policymakers must be developed toward overcoming the existing bottlenecks in constructing comprehensive solution packages. Ecosystems, particularly terrestrial through to marine and lacustrine domains such as forested ecosystems, are first worthy of actual real-life pilot operating conditions, such as adaptation designs. For those aspects touching economic incentives and frameworks that would simplify wide-scale take up, it needs further considerations, such as taking future studies with barriers involving cost, infrastructural as well as regulations. This would make innovation, collaboration, and adaptability allow future research to focus on stronger and more sustainable carbon sequestration initiatives that make the ecosystem much more resilient to the fight against climate change.

Acknowledgment: Grateful to Bali Tourism Polytechnic, Kabupaten Badung, Bali, Indonesia.

Data Availability Statement: Data is available upon request from the corresponding author.

Funding Statement: This research received no financial support.

Conflicts of Interest Statement: No conflicts of interest were declared; all references were appropriately cited.

Ethics and Consent Statement: The research adhered to ethical guidelines, with informed consent and confidentiality ensured.

References

- 1. K. A. Novick, D. L. Ficklin, P. C. Stoy, C. A. Williams, G. Bohrer, A. C. Oishi, S. A. Papuga, P. D. Blanken, A. Noormets, B. N. Sulman, R. L. Scott, L. Wang, and R. P. Phillips, "The increasing importance of atmospheric demand for ecosystem water and carbon fluxes," Nature Climate Change, vol. 6, no. 9, pp. 1023-1027, 2016.
- 2. T. F. Keenan, I. C. Prentice, J. G. Canadell, C. A. Williams, H. Wang, M. Raupach, and G. J. Collatz, "Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake," Nature Communications, vol. 7, no. 11, pp. 1–10, 2016.
- 3. Z. L. L. Ding, "Research on framework roadmap of China's carbon neutrality," Chin. Ind. Inform. Technol, vol. 8, no.1, pp. 54–61, 2021.
- 4. Y. Xiao, Q. Xiao, Q. Xiong, and Z. Yang, "Effects of ecological restoration measures on soil erosion risk in the Three Gorges Reservoir Area since the 1980s," GeoHealth, vol. 4, no. 12, pp. 1-13, 2020.
- 5. H. Liu, L. Xing, C. Wang, and H. Zhang, "Sustainability assessment of coupled human and natural systems from the perspective of the supply and demand of ecosystem services," Front. Earth Sci., vol. 10, no. 10, pp. 1-17, 2022.
- 6. Y. Xiao, Q. Xiao, and J. Zhang, "Balancing the international benefits and risks associated with implementation of ecological policy on the Qinghai-Tibet Plateau, China," Gondwana Res., vol. 115, no. 3, pp. 183–190, 2023.
- 7. A. G. Barr, T.A. Black, E.H. Hogg, T.J. Griffis, K. Morgenstern, Natascha Kljun, A. Theede, Z. Nesic, "Climatic controls on the carbon and water balances of a boreal aspen forest, 1994–2003," Glob. Chang. Biol., vol. 13, no. 3, pp. 561–576, 2007.
- 8. J.F. Zhao, D.S. Liu, Y. Cao, L.J. Zhang, H.W. Peng, K.L. Wang, H.F. Xie, C.Z. Wang, "An integrated remote sensing and model approach for assessing forest carbon fluxes in China," Sci. Total Environ., vol. 811, no. 3, p. 152480, 2022.

- 9. K. J. Bloomfield, R. V. Hoolst, M. Balzarolo, I. A. Janssens, S, Vicca, D. Ghent, I. C. Prentice, "Towards a general monitoring system for terrestrial primary production: A test spanning the European drought of 2018," Remote Sens, vol. 15, no. 6, p. 1693, 2018.
- P. Wagle, P. H. Gowda, D. P. Billesbach, B. K. Northup, M. S. Torn, J. P. S. Neel, and S. C. Biraud, "Dynamics of CO2 and H2O fluxes in Johnson grass in the U.S. Southern Great Plains," Sci. Total Environ., vol. 739, no. 10, p. 140077, 2020.
- 11. O. Mašek, W. Buss, P. Brownsort, M. Rovere, A. Tagliaferro, L. Zhao, X. Cao, G. Xu, "Potassium doping increases biochar carbon sequestration potential by 45%, facilitating decoupling of carbon sequestration from soil improvement," Sci. Rep., vol. 9, no. 4, pp. 1-8, 2019.
- 12. V. M. Yarushina and D. Bercovici, "Mineral carbon sequestration and induced seismicity: Co2sequestration And Induced Seismicity," Geophys. Res. Lett., vol. 40, no. 5, pp. 814–818, 2013.
- 13. Y. Xiao and Q. Xiao, "Identifying key areas of ecosystem services potential to improve ecological management in Chongqing City, southwest China," Environ. Monit. Assess., vol. 190, no. 3, p. 258, 2018.
- 14. A. Aryal, I. Stricklin, M. Behzadirad, D. W. Branch, A. Siddiqui, and T. Busani, "High-quality dry etching of LiNbO3 assisted by proton substitution through H2-plasma surface treatment," Nanomaterials (Basel, Switzerland), vol. 12, no. 16, p. 2836, 2022.
- 15. E. Bayas, P. Kumar, "Impact of slicing software on geometric correctness for FDM additive manufacturing," International Development Planning Review, vol. 23, no. 1, pp. 704–711, 2024
- 16. E. Bayas, P. Kumar, and K. Deshmukh, "A comprehensive review: Process parameters impact on tensile strength of 3D printed PLA parts," International Journal of Advanced Research in Science, Communication, and Technology, vol. 3, no. 2, pp. 233–239, 2023.
- 17. H. Ren, L. Li, Q. Liu, X. Wang, Y. Li, D. Hui, S. Jian, J. Wang, H. Yang, H. Lu, G. Zhou, X. Tang, Q. Zhang, D. Wang, L. Yuan, and X. Chen, "Spatial and temporal patterns of carbon storage in forest ecosystems on Hainan Island, southern China," PLoS One, vol. 9, no. 9, p. e108163, 2014.
- 18. K. Shrestha, S. Chaudhary, S. Subedi, S. Rai, D. K. Acharya, and R. Rai, "Farming systems research in Nepal: Concepts, design, and methodology for enhancing agricultural productivity and sustainability," J. Multidiscip. Sci., vol. 6, no. 1, pp. 17–25, 2024.
- 19. N. X. Truong, J. Y. Kim, R. Rai, J. H. Kim, N. S. Kim, and A. Wakana, "Karyotype analysis of Korean Lilium maximowiczii Regal populations," J. Fac. Agric. Kyushu Univ., vol. 60, no. 2, pp. 315–322, Sep. 2015.
- 20. R. L. Paldi, A. Aryal, M. Behzadirad, T. Busani, A. Siddiqui, and H. Wang, "Nanocomposite-seeded single-domain growth of lithium niobate thin films for photonic applications," in Conf. Lasers Electro-Optics, Washington, D.C.: Optica Publishing Group, 2021.
- 21. R. Rai and J. H. Kim, "Effect of storage temperature and cultivars on seed germination of Lilium×formolongi HORT.," J. Exp. Biol. Agric. Sci., vol. 8, no. 5, pp. 621–627, Oct. 2020.
- 22. R. Rai and J. H. Kim, "Estimation of combining ability and gene action for growth and flowering traits in Lilium longiflorum," Int. J. Adv. Sci. Technol., vol. 29, no. 8S, pp. 1356–1363, 2020.
- 23. R. Rai, A. Badarch, and J.-H. Kim, "Identification of superior three way-cross F1s, its line×tester hybrids, and donors for major quantitative traits in Lilium×formolongi," J. Exp. Biol. Agric. Sci., vol. 8, no. 2, pp. 157–165, 2020.
- 24. R. Rai, J. Shrestha, and J. H. Kim, "Combining ability and gene action analysis of quantitative traits in Lilium × formolongi," J. Agric. Life Environ. Sci., vol. 30, no. 3, pp. 131–143, 2018.
- 25. R. Rai, J. Shrestha, and J. H. Kim, "Line×tester analysis in Lilium×formolongi: Identification of superior parents for growth and flowering traits," SAARC J. Agric., vol. 17, no. 1, pp. 175–187, 2019.
- 26. E. Bayas, P. Kumar, and K. Deshmukh, "Review of process parameter's effect on 3D printing," GIS Science Journal, vol. 10, no. 3, pp. 834–845, 1869.
- 27. E. Bayas, P. Kumar, and M. Harne, "Impact of process parameters on mechanical properties of FDM 3D-printed parts: A comprehensive review," European Chemical Bulletin, vol. 12, no. S5, pp. 708–725, 2023.
- 28. S. Chaudhary, A. K. Shrestha, S. Rai, D. K. Acharya, S. Subedi, and R. Rai, "Agroecology integrates science, practice, movement, and future food systems," J. Multidiscip. Sci., vol. 5, no. 2, pp. 39–60, Dec. 2023.
- 29. S. M. Z. Shifat, I. Stricklin, R. K. Chityala, A. Aryal, G. Esteves, A. Siddiqui, and T. Busani, "Vertical etching of scandium aluminum nitride thin films using TMAH solution," Nanomaterials (Basel, Switzerland), vol. 13, no. 2, 2023, doi: 10.3390/nano13020274.
- 30. T. X. Nguyen, S.-I. Lee, R. Rai, N. Kim, and J. H. Kim, "Ribosomal DNA locus variation and REMAP analysis of the diploid and triploid complexes of Lilium lancifolium," Genome, vol. 59, no. 8, pp. 551–564, 2016.
- 31. V. Y. Nguyen, R. Rai, J.-H. Kim, J. Kim, and J.-K. Na, "Ecogeographical variations of the vegetative and floral traits of Lilium amabile Palibian," J. Plant Biotechnol., vol. 48, no. 4, pp. 236–245, 2021.